Optics

Optical Systems

Free Space Isolators

E-O Devices

Spherical Singlets

Multi-Element Lenses

Cylindrical Lenses

Aspheric Lenses

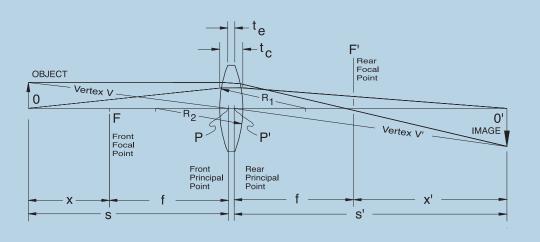
Mirrors

Diffusers & Lens Arrays

Windows

Prisms

Granings


Polarization Optics

Beamsplitters

Filters & Attenuators

Gas Cells

Spherical Lens Parameters

Ø = Lens Diameter

 $M = \frac{S'}{S}$ Magnification or Conjugate Ratio

f = EFL (Effective Focal Length)

 $\frac{1}{f} = \frac{1}{S} + \frac{1}{S'}$ Paraxial Lens Formula (assumes sin $\theta \approx \theta)$

S = Object Distance, positive for objects to the left of the front principal point P.

 S^\prime = Image Distance, positive for images to the right of the rear rear principal point P^\prime

Transmission of Various Materials

GLASS	DESCRIPTION	TRANSMISSION		
BK7	BK7 is a high-quality optical glass commonly used to make lenses intended for laboratory use. It has excellent mechanical and optical properties as well as good transmission in the visible and IR.	350nm to 2.0µm	BK7 TRANSMISSION 100 90 88 80 70 700 1200 1700 2200 2700 3200 Wavelength (nm)	1mm Thick Sample Surface Reflections Included
UV Fused Silica	UV fused silica is an excellent material for the transmission of UV light. It is durable and has good mechanical properties Texternal ≥ 80%/cm @ 185nm Tinternal ≥ 88%/cm @ 185nm	185nm to 2.1μm	UV Fused Silica Transmission 100 100 100 100 100 100 100 1	1mm Thick Sample Surface Reflections Included
CaF ₂	Calcium fluoride provides great transmission from the UV to the IR. Synthetic CaF ₂ is used to improve deep UV transmission and to increase the damage threshold.	180nm to 8.0μm	CaF ₂ Transmission 100 90 88 80 80 80 80 80 80 80 80 80 80 80 80 80 8	1mm Thick Sample Surface Reflections Included
${ m MgF}_2$	Magnesium fluoride, an extremely rugged and durable material, is transparent over an extensive range of wavelengths from the UV to the IR.	200nm to 6.0μm	MgF ₂ Transmission 100 90 88 80 90 100 90 90 90 90 90 90 90	1mm Thick Sample Surface Reflections Included

Optics

Optical Systems

E-O Devices

Free Space Isolators

Spherical Singlets

Multi-Element

Aspheric Lenses

Gratings

Polarization Optics

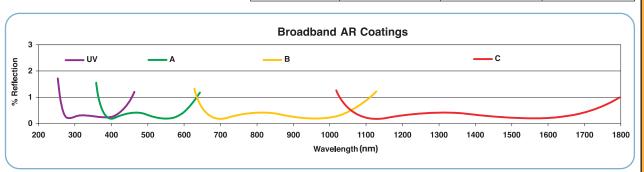
Filters & Attenuators

Gas Cells

GLASS	DESCRIPTION	TRANSMISSION	
SF11	This glass provides excellent chemical resistance and has a high refractive index, which allows for the same amount of refraction with less curvature. It is useful for constructing optics that would be extremely difficult to make from BK7.	420nm to 2.3μm	SF11 TRANSMISSION 1mm Thick Sample 5 90 8 00 1 5 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ge	The transmission characteristics of germanium in the IR region of the spectrum make it an ideal choice for imaging 2.0 - 16µm light. Ge plano-convex lenses are particularly well suited for more biomedical and military imaging applications.	2.0μm to 16μm	Germanium (Ge) 1mm Thick Sample 1 100 100 100 100 100 100 100 100 100
ZnSe	With a transmission range from 600nm - 16µm, zinc selenide plano-convex lenses are ideal for IR applications. Due to the low absorption coefficient, these lenses are also particularly well suited for high-power CO laser applications. In contrast to Ge and Si, which also transmit in this spectral range, ZnSe transmits some visible light, thereby allowing for visual alignment of the optic.		Zinc Selenide (ZnSe) 1mm Thick Sample 50 100 100 100 100 100 100 100
Si	Silicon plano-convex lenses are an ideal choice for applications from 1.2 - 8µm and are particularly well suited for imaging, biomedical, and military applications.	1200nm to 8.0 μm	Silicon (Si) 1mm Thick Sample 2mm 40 2m

Spherical Singlet Anti-Reflection Coatings

Most of our standard optics are available with high-performance, multilayer AR coatings, which minimize surface reflections within the specified wavelength ranges. These coatings are designed for angles of incidence between 0° and 30° (0.5 NA). For optics intended to be used at large


■ R < 0.5% Average Over Band at 0° Incidence

- Less Angular Sensitivity within Angular Range
- Frequently Run Coatings are Listed Below

angles, consider using a custom coating optimized at a 45° of incidence; these coatings are effective from 25° to 52°. The plot shown below indicates the performance of the standard coatings in this family as a function of wavelength for a single surface. Broadband coatings have a typical absorption of 0.25% that is not shown in the reflectivity plots.

Normal Incidence Broadband Multilayer Anti-Reflective Coating

COATING CODE	WAVELENGTH RANGE	DESIGN ANGLE OF INCIDENCE	USEFUL ANGLE OF INCIDENCE
-UV	290-370nm	0°	0 to 30°
-A	350-650nm	0°	0 to 30°
-В	650-1050nm	0°	0 to 30°
-C	1050-1620nm	0°	0 to 30°

CaF₂ Vacuum UV: Plano-Convex Lenses

Specifications

- Material: Vacuum Grade CaF₂
- Wavelength Range: 180nm to 8.0µm Uncoated
- **Dia. Tolerance:** +0.00/-0.10mm
- Focal Length Tolerance: ±1% @ 248nm
- Scratch-Dig: 40-20
- **Centration:** 3arcmin
- Clear Aperture: 90% of Dia.
- Design Wavelength: 588nm (n = 1.43388)
- **Coating:** None

Plano-Convex Lenses: Material CaF₂

	DIA	f		PRI	CE		R	t _c	t _{e¹}	f _b	SUGGESTED
ITEM #	(mm)	(mm)	\$	£	€	RMB	(mm)	(mm)	(mm)	(mm)	MOUNT ²
LA5315	12.7	20.0	\$ 98.00	£ 61.70	€ 91,10	¥ 935.90	8.7	4.3	1.5	17.0	
LA5183	12.7	50.0	\$ 100.00	£ 63.00	€ 93,00	¥ 955.00	21.7	2.5	1.5	48.3	LMR05
LA5458	12.7	80.0	\$ 90.00	£ 56.70	€ 83,70	¥ 859.50	34.7	2.1	1.5	78.5	
LA5370	25.4	40.0	\$ 145.00	£ 91.40	€ 134,90	¥ 1,384.80	17.4	7.5	2.0	34.8	
LA5763	25.4	50.0	\$ 155.00	£ 97.70	€ 144,20	¥ 1,480.30	21.7	6.1	2.0	45.7	
LA5042	25.4	75.0	\$ 185.00	£ 116.60	€ 172,10	¥ 1,766.80	32.5	4.6	2.0	71.8	
LA5817	25.4	100.0	\$ 92.00	£ 58.00	€ 85,60	¥ 878.60	43.4	3.9	2.0	97.3	
LA5012	25.4	150.0	\$ 102.00	£ 64.30	€ 94,90	¥ 974.10	65.1	3.3	2.0	147.7	LMR1
LA5714	25.4	200.0	\$ 103.00	£ 64.90	€ 95,80	¥ 983.70	86.8	2.9	2.0	198.0	
LA5255	25.4	250.0	\$ 123.00	£ 77.50	€ 114,40	¥ 1,174.70	108.5	2.7	2.0	248.1	
LA5464	25.4	500.0	\$ 97.00	£ 61.10	€ 90,20	¥ 926.40	216.9	2.4	2.0	498.3	
LA5956	25.4	750.0	\$ 102.00	£ 64.30	€ 94,90	¥ 974.10	325.4	2.2	2.0	748.4	
LA5835	25.4	1000.0	\$ 100.00	£ 63.00	€ 93,00	¥ 955.00	433.9	2.2	2.0	998.5	

- 1) Edge thickness given before 0.2mm @ 45° typical chamfer
- 2) See the Lens Mount Section, Starting on Page 153.

Average Transmission >90% from 200nm to 6μm

Magnesium Fluoride: Plano-Convex Lenses

With a transmission window from 200nm to 6µm, Vacuum Grade UV MgF $_2$ is an ideal material for many biological and military imaging applications. Magnesium Fluoride is extremely durable in comparison to other materials that are transparent from the UV to the IR. The C-axis of the MgF $_2$ crystalline structure is oriented to minimize birefringence.

Specifications

- Material:
 - Vacuum Grade UV MgF₂
- Wavelength Range: 200nm to 6μm Uncoated
- **Dia. Tolerance:** +0.00/-0.10mm
- Center Thickness Tolerance: ±0.2mm
- Focal Length Tolerance: ±2% @ 633nm
- Scratch-Dig: 40-20
- **Centration:** 3arcmin
- Clear Aperture: 90% of Dia.
- Alignment to C-Axis: <20arcmin
- **Coating:** None

Plano-Convex Lenses: Material MgF₂

	DIA	FC	CAL LE	NGTH (m	m)	PRICE					R t _c		fь	SUGGESTED
ITEM #	(mm)	200nm	486nm	633nm	2.0µm	\$	£	€	RMB	(mm)	(mm)	(mm)	(mm)	MOUNT ²
LA6002	25.4	44.6	49.6	50	51.2	\$ 333.00	£ 209.80	€ 309,70	¥ 3,180.20	18.9	6.9	2.0	45.0	
LA6003	25.4	53.3	59.4	60	61.4	\$ 307.00	£ 193.40	€ 285,50	¥ 2,931.90	22.6	6.0	2.1	55.5	
LA6004	25.4	66.8	74.4	75	76.9	\$ 291.00	£ 183.30	€ 270,60	¥ 2,779.10	28.3	5.0	2.0	71.4	
LA6005	25.4	89.3	99.4	100	102.8	\$ 270.00	£ 170.10	€ 251,10	¥ 2,578.50	37.8	4.3	2.1	97.1	
LA6006	25.4	133.7	148.7	150	153.7	\$ 250.00	£ 157.50	€ 232,50	¥ 2,387.50	56.6	3.2	1.8	147.7	LMR1
LA6007	25.4	178.2	198.3	200	205.0	\$ 239.00	£ 150.60	€ 222,30	¥ 2,282.50	75.4	3.2	2.1	197.7	
LA6008	25.4	222.8	247.9	250	256.2	\$ 229.00	£ 144.30	€ 213,00	¥ 2,187.00	94.3	2.8	1.9	248.0	
LA6009	25.4	445.5	495.8	500	512.5	\$ 218.00	£ 137.30	€ 202,70	¥ 2,081.90	188.5	2.6	2.2	498.1	
LA6010	25.4	891.1	991.6	1000	1024.9	\$ 213.00	£ 134.20	€ 198,10	¥ 2,034.20	377.0	2.4	2.2	998.3	

¹⁾ Edge thickness given before 0.2mm @ 45° typical chamfer.

²⁾ See the Lens Mount Section, Starting on Page 153.

Free Space Isolators

E-0 Devices

Spherical Singlets

Multi-Element

Cylindrical Lenses

Aspheric Lenses

Diffusers

Windows

Duiomo

Gratings

Polarization Optics

Beamsplitters

Filters & Attenuators

Gas Cells