Quantum Cascade Lasers (QCLs): Distributed Feedback, Two-Tab C-Mount


  • Center Wavelengths Between 4.00 µm and 11.00 µm
  • Typical Output Power: 40 - 100 mW
  • Single-Wavelength Emission Tunable within 1 - 5 cm-1 Range
  • Shipped from Stock

QD9500CM1

Distributed Feedback Laser

(Linewidth Shown is Limited by Measurement Resolution)

Related Items


Please Wait
MIR Laser Types
Fabry-Perot TO Can
Two-Tab C-Mount
D-Mount
HHL
Turnkey
Distributed
Feedback
Two-Tab C-Mount
D-Mount
HHL
Turnkey
Webpage Features
info icon Clicking this icon opens a window that contains specifications and mechanical drawings.
info icon Clicking this icon allows you to download our standard support documentation.

Choose Item

Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.

Features

  • Single-Wavelength Distributed Feedback Quantum Cascade Lasers (QCLs)
  • Typical Output Power from 40 to 100 mW, Depending on Device
  • Center Wavelengths from 4.00 µm to 11.00 μm (Wavenumbers Between 2500 cm-1 and 909 cm-1)
  • Compact Two-Tab C-Mount Package: 6.4 mm x 4.3 mm x 7.9 mm (L x W x H)
  • Electrically Isolated from C-Mount
  • Custom Wavelengths and Mounts Also Available

Thorlabs' Distributed Feedback Quantum Cascade Lasers (DFB QCLs) emit at a well defined center wavelength and provide single transverse mode operation. By tuning the input current and operating temperature, the output frequency can be tuned over a narrow range between 1 cm-1 and 5 cm-1. These lasers are ideal for chemical sensing (see the Spectroscopy tab), optical communications, and other applications. Thorlabs also manufactures Fabry-Perot Quantum Cascade Lasers and Interband Cascade Lasers, which exhibit broadband emission.

Before shipment, the output spectrum, power, and L-I-V curve are measured for each serial-numbered device by an automated test station. These measurements are available below and are also included on a data sheet with the laser. These QCLs are specified for CW output. While pulsed output is possible, this application prohibits current tuning, and performance is not guaranteed. Each QCL has an uncoated back facet and an uncoated or AR-coated front facet (see the Appearance tab for details). Please note that some optical power is emitted through the rear facet; this output is not usable in applications.

Packages
Each DFB quantum cascade laser is mounted on a two-tab C-mount that provides high thermal conductivity and can be secured using a 2-56 or M2 screw with the counterbored Ø2.4 mm (Ø0.09") through hole. As measured from the bottom of the C-mount, the emission height is either 7.15 mm or 7.39 mm depending on the chosen QCL. Click on a laser's blue info icon (info icon) and view the Drawing tab to find the laser's emission height. QCLs are electrically isolated from their C-mounts. Please see the Handling tab for more tips and information for handling these laser packages.

Mounts, Drivers, and Temperature Control
We generally recommend the LDMC20 C-Mount Laser Mount and ITC4002QCL or ITC4005QCL Dual Current / Temperature Controller for use with our distributed feedback QCLs. This device combination includes all the necessary components to mount, drive, and thermally regulate a two-tab C-mount laser. Other compatible current and temperature controllers are listed in the Drivers tab.

If designing your own mounting solution, note that due to these lasers' heat loads, we recommend that they be mounted in a thermally conductive housing to prevent heat buildup. Heat loads for distributed feedback QCLs can be up to 12.6 W (see the Handling tab for additional information).

The typical operating voltage of distributed feedback quantum cascade lasers is 9 - 14 V. These lasers do not have built-in monitor photodiodes and therefore cannot be operated in constant power mode.

High-Power QCLs
Click to Enlarge

Available Wavelengths for Custom DFB Lasers

DFB QCLs at Custom Wavelengths

Thorlabs manufactures custom and OEM quantum cascade lasers in high volumes. We maintain chip inventory from 3 µm to 12 µm at our Jessup, Maryland laser manufacturing facility, and can deliver DFB lasers with custom center wavelengths that are qualified to a user-defined wavelength precision.

More details are available on the Custom & OEM Lasers tab. To inquire about pricing and availability, please contact us. A semiconductor specialist will contact you within 24 hours or the next business day.

Table Key
Current Controllers
Dual Current / Temperature Controllers

Use the tables below to select a compatible controller for our MIR lasers. The first table lists the controllers with which a particular MIR laser is compatible, and the second table contains selected information on each controller; complete information on each controller is available in its full web presentation. We particularly recommend our ITC4002QCL and ITC4005QCL controllers, which have high compliance voltages of 17 V and 20 V, respectively. Together, these drivers support the current and voltage requirements of our entire line of Mid-IR Lasers. To get L-I-V and spectral measurements of a specific, serial-numbered device, click "Choose Item" next to the part number below, then click on the Docs Icon next to the serial number of the device.

Laser Mount Compatibility
Thorlabs' LDMC20 C-Mount Laser Mount ships with current and TEC cables for the LDC4005, ITC4001, ITC4002QCL, ITC4005, and ITC4005QCL controllers. If designing your own mounting solution, note that due to these lasers' heat loads, we recommend that they be secured in a thermally conductive housing to prevent heat buildup. Heat loads for distributed feedback QCLs can be up to 12.6 W.

Laser and Controller Compatibility

Laser Item # Wavelength
(Wavenumbers)
Current Controllers Dual Current / Temperature Controllers
QD4500CM1 4.00 - 5.00 µm
(2500 - 2000 cm-1)
- ITC4002QCL, ITC4005QCL
QD5500CM1 5.00 - 6.00 µm
(2000 - 1667 cm-1)
- ITC4002QCLITC4005QCL
QD5250C2 5.20 to 5.30 µm
(1923 - 1887 cm-1)
- ITC4002QCLITC4005QCL
QD6500CM1 6.00 - 7.00 µm
(1667 - 1429 cm-1)
- ITC4002QCLITC4005QCL
QD7500CM1 7.00 - 8.00 µm
(1429 - 1250 cm-1)
- ITC4002QCLITC4005QCL
QD8050CM1 8.00 - 8.10 µm
(1250 - 1235 cm-1)
LDC4005 ITC4001, ITC4002QCLITC4005ITC4005QCL
QD8500CM1 8.00 - 9.00 µm
(1250 - 1111 cm-1)
- ITC4002QCL, ITC4005QCL
QD9500CM1 9.00 - 10.00 µm
(1111 - 1000 cm-1)
- ITC4002QCL, ITC4005QCL
QD9550C2 9.50 to 9.60 µm
(1042 - 1053 cm-1)
- ITC4002QCL, ITC4005QCL
QD10500CM1 10.00 - 11.00 µm
(1000 - 909 cm-1)
- ITC4002QCL, ITC4005QCL

 

Controller Selection Guide

Controller Item # Controller Type Controller Package Current Range Current Resolution Voltage Cables for
LDMC20 Laser Mount
LDC4005 Current Large Benchtop
(263 x 122 x 307 mm)
0 to 5 A 1 mA (Front Panel)
80 µA (Remote Control)
12 V Included with LDMC20
ITC4001 Current / Temperature Large Benchtop
(263 x 122 x 307 mm)
0 to 1 A 100 µA (Front Panel)
16 µA (Remote Control)
11 V Included with LDMC20
ITC4002QCL 0 to 2 A 100 µA (Front Panel)
32 µA (Remote Control)
17 V Included with LDMC20
ITC4005 0 to 5 A 1 mA (Front Panel)
80 µA (Remote Control)
12 V Included with LDMC20
ITC4005QCL 20 V Included with LDMC20

Do

  • Provide External Temperature Regulation
    (e.g., Heat Sinks, Fans, and/or Water Cooling)
  • Use a Constant Current Source Specifically Designed for Lasers
  • Observe Static Avoidance Practices
  • Be Careful When Making Electrical Connections

Do Not

  • Use Thermal Grease
  • Expose the Laser to Smoke, Dust, Oils, Adhesive Films, or Flux Fumes
  • Blow on the Laser
  • Drop the Laser Package

Handling Two-Tab C-Mount Lasers

Proper precautions must be taken when handling and using two-tab C-mount lasers. Otherwise, permanent damage to the device will occur. Members of our Technical Support staff are available to discuss possible operation issues.

Avoid Static
Since these lasers are sensitive to electrostatic shock, they should always be handled using standard static avoidance practices.

Avoid Dust and Other Particulates
Unlike TO can and butterfly packages, the laser chip of a two-tab C-mount laser is exposed to air; hence, there is no protection for the delicate laser chip. Contamination of the laser facets must be avoided. Do not blow on the laser or expose it to smoke, dust, oils, or adhesive films. The laser facet is particularly sensitive to dust accumulation. During standard operation, dust can burn onto this facet, which will lead to premature degradation of the laser. If operating a two-tab C-mount laser for long periods of time outside a cleanroom, it should be sealed in a container to prevent dust accumulation.

Use a Current Source Specifically Designed for Lasers
These lasers should always be used with a high-quality constant current driver specifically designed for use with lasers, such as any current controller listed in the Drivers tab. Lab-grade power supplies will not provide the low current noise required for stable operation, nor will they prevent current spikes that result in immediate and permanent damage.

Thermally Regulate the Laser
Temperature regulation is required to operate the laser for any amount of time. The temperature regulation apparatus should be rated to dissipate the maximum heat load that can be drawn by the laser. For our quantum cascade lasers, this value can be up to 18 W. The LDMC20 C-Mount Laser Mount, which is compatible with our two-tab C-mount lasers, is rated for >20 W of heat dissipation.

The back face of the C-mount package is machined flat to make proper thermal contact with a heat sink. Ideally, the heat sink will be actively regulated to ensure proper heat conduction. A Thermoelectric Cooler (TEC) is well suited for this task and can easily be incorporated into any standard PID controller.

A fan may serve to move the heat away from the TEC and prevent thermal runaway. However, the fan should not blow air on or at the laser itself. Water cooling methods may also be employed for temperature regulation. Do not use thermal grease with this package, as it can creep, eventually contaminating the laser facet. Pyrolytic graphite is an acceptable alternatives to thermal grease for these packages. Solder can also be used to thermally regulate two-tab C-mount lasers, although controlling the thermal resistance at the interface is important for best results.

For assistance in picking a suitable temperature controller for your application please contact Tech Support.

Carefully Make Electrical Connections
When making electrical connections, care must be taken. The flux fumes created by soldering can cause laser damage, so care must be taken to avoid this. Solder can be avoided entirely for two-tab C-mount lasers by using the LDMC20 C-Mount Laser Mount. If soldering to the tabs, solder with the C-mount already attached to a heat sink to avoid unnecessary heating of the laser chip.

Minimize Physical Handling
As any interaction with the package carries the risk of contamination and damage, any movement of the laser should be planned in advance and carefully carried out. It is important to avoid mechanical shocks. Dropping the laser package from any height can cause the unit to permanently fail.

Laser Package Differences
Click to Enlarge

C-Mount Laser with Uncoated Front Facet (Left) and AR-Coated Front Facet (Right)

Appearance

In order to ensure that the finished lasers meet their target specifications, they are qualified by an automated test station before shipment. The test station measures the output spectrum, optical power, and L-I-V curve, which are included on a data sheet that ships with each serial-numbered laser. These measurements are also available below by clicking "Choose Item" and then clicking on the red Docs icon (info icon) that appears.

Because every laser is a unique device, certain units require the front facet to receive an anti-reflection (AR) coating to reach the specified output power. As a result, finished units will have varying appearances, as shown by the photo to the right. These cosmetic differences do not affect the performance of the laser when it is operated within its specified parameters. All shipped units have been burned in and have passed our rigorous optical performance, reliability, and environmental testing.

Choosing a Collimating Lens

Since the output of our MIR lasers is highly divergent, collimating optics are necessary. Aspheric lenses, which are corrected for spherical aberration, are commonly chosen when the desired beam diameter is between 1 - 5 mm. The simple example below illustrates the key specifications to consider when choosing the correct lens for a given application.

The following example uses our previous generation 3.8 µm Interband Cascade Laser.

Key Specifications

  • Center Wavelength: 3.80 µm
  • Parallel Beam Divergence Angle: 40°
  • Perpendicular Beam Divergence Angle: 60°
  • Desired Collimated Beam Diameter: 4 mm (Major Axis)

The specifications for the laser indicate that the typical parallel and perpendicular FWHM divergences are 40° and 60°, respectively. Therefore, as the light propagates, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in your calculations (in this case, 60°).

laser diode collimation drawing
θ = Divergence Angle
Ø = Beam Diameter

Using the information above, the focal length needed to obtain the desired beam diameter can be calculated:

focal length calculation

This information allows the appropriate collimating lens to be selected. Thorlabs offers a large selection of black diamond aspheric lenses for the mid-IR spectral range. Since this laser emits at 3.80 µm, the best AR coating is our -E coating, which provides Ravg < 0.6% per surface from 3 to 5 µm. The lenses with focal lengths closest to the calculated value of 3.46 mm are our 390036-E (unmounted) or C036TME-E (mounted) Molded Aspheric Lenses, which have f = 4.00 mm. Plugging this focal length back into the equation shown above gives a final beam diameter of 4.62 mm along the major axis.

Next, we verify that the numerical aperture (NA) of the lens is larger than the NA of the laser:

NALens = 0.56

NALaser ~ sin (30°) = 0.5

NALens > NALaser

Since NALens > NALaser, the 390036-E or C036TME-E lenses will give acceptable beam quality. However, by using the FWHM beam diameter, we have not accounted for a significant fraction of the beam power. A better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 beam diameter is approximately equal to 1.7X the FWHM diameter. The 1/e2 beam diameter is therefore a more conservative estimate of the beam size, containing more of the laser's intensity. Using this value significantly reduces far-field diffraction (since less of the incident light is clipped) and increases the power delivered after the lens.

A good rule of thumb is to pick a lens with an NA of twice the NA of the laser diode. For example, either the 390037-E or the C037TME-E could be used as these lenses each have an NA of 0.85, which a little less than twice that of our IF3800CM2 laser (NA 0.5). Compared to the first set of lenses we identified, these have a shorter focal length of 1.873 mm, resulting in a smaller final beam diameter of 2.16 mm.

Beam Profile Characterization of a Mid-IR Laser

Because quantum cascade lasers (QCLs) and interband cascade lasers (ICLs) have intrinsically large divergence angles, it is necessary to install collimating optics in front of the laser face, as shown in the Collimation tab. We are frequently asked what beam quality can be reasonably expected once the beam has been collimated. This tab presents an M2 measurement we performed using our previous generation 3.80 µm Interband Cascade Laser.

For this system, we obtained M= 1.2 ± 0.08 in the parallel direction and M= 1.3 ± 0.2 in the perpendicular direction. While this is just one example, we believe these results to be representative of well-collimated mid-IR lasers manufactured by Thorlabs, as corroborated by supplementary measurements we have performed in-house.

Experimental Setup

Pyroelectric Camera Upstream of Focus
Click to Enlarge

Pyroelectric Camera Upstream of Focus
Pyroelectric Camera Downstream of Focus
Click to Enlarge

Pyroelectric Camera Downstream of Focus

The apparatus we used to determine M2 is shown schematically in the figure above. In order to ensure that our results were rigorous, all data acquisition and analysis were consistent with the ISO11146 standard.

The previous generation Interband Cascade Laser used for this measurement emitted CW laser light with a center wavelength of 3.781 µm. Our LDMC20 temperature-stabilized mount held the laser's temperature at 25 °C. The output beam was collimated by a C037TME-E lens located immediately downstream of the laser face. This lens was selected because of its large NA of 0.85 (which helped maximize collection of the emitted light) and because of its AR coating (Ravg < 0.6% per surface from 3 µm to 5 µm). We measured 10 mW of output power after the lens.

A pyroelectric camera (Spiricon Pyrocam IV) with 80 µm square pixels was scanned along the beam propagation direction, and the beam width was measured along the parallel and perpendicular directions using the second-order moment (D4σ) definition. Hyperbolas were fit to the beam width to extract M2 for each direction. The camera's internal chopper was triggered at 50 Hz since the pyroelectric effect is sensitive to changes in temperature rather than absolute temperature differences. A ZnSe window was present in front of the detector array to help minimize visible light contributions to the signal.

Beam Profile Measurement
Click to Enlarge

D4σ Beam Width of Collimated IF3800CM2 Laser

Data Analysis
Presented to the right are the second-order moment (D4σ) beam widths for the parallel and perpendicular directions as a function of distance from the laser face (denoted as z). Along the parallel direction, we obtained a minimum beam width of 1.5 mm, while along the perpendicular direction, we obtained a minimum beam width of 1.3 mm. The spatial profiles we observed at the two minimum beam width positions, as obtained by the pyroelectric camera, are shown below.

The divergence of the beam can be described by a hyperbola, as written in Equation 1:

Hyperbola for M^2 Equation (Eq. 1)

In order to obtain the hyperbola coefficients a, b, and c for the parallel and perpendicular directions, we fit the discrete beam width measurements along each direction to hyperbolas, as shown in the graph to the right. These coefficients were substituted into Equation 2 (taking λ = 3.781 µm) to yield M2.

M^2 Equation (Eq. 2)

The hyperbola coefficients and M2 values derived by this method are listed in the table below.

Value Parallel Perpendicular
a 3.6 ± 0.1 mm2 9.7 ± 0.2 mm2
b -0.0096 ± 0.0007 mm -0.0268 ± 0.0008 mm
c (1.61 ± 0.08) × 10-5 (2.27 ± 0.08) × 10-5
M2 1.2 ± 0.08 1.3 ± 0.2

The 0.85 NA of the collimating lens we used is the largest NA of any lens for this wavelength range that is offered in our catalog. Despite this large NA, we observed lobes in the far field (shown by the figure below) that are consistent with clipping of the laser-emitted light. An ideal measurement would not contain these artifacts.

As shown by the graph above and to the right, we observed significant astigmatism in the collimated beam: the beam waist of the parallel direction occurred around z = 300 mm, while the beam waist of the perpendicular direction occurred around z = 600 mm. This astigmatism corresponds closely to what is expected for this laser, given that the IF3800CM2 laser is specified with a parallel FWHM beam divergence of 40° and a perpendicular FWHM beam divergence of 60°.

Beam Profile from Pyrocam
Beam Profile at Beam Waist of Parallel Direction
(Each Pixel is 80 µm Square)
Beam Profile from Pyrocam
Beam Profile at Beam Waist of Perpendicular Direction
(Each Pixel is 80 µm Square)
Selected Distributed Feedback QCLsa
Item # Nominal Center Frequency Targeted Gas(es)
QD5250C2 1905 cm-1 (5.25 µm) NO (Nitric Oxide)
QD8050CM1 1242 cm-1 (8.05 µm) CH4 (Methane)
HONO (Nitrous Acid)
QD9550C2 1047 cm-1 (9.55 µm) NH3 (Ammonia)
  • This table is intended as a reference. Each DFB QCL is a unique device with its own spectrum, and does not necessarily emit at the exact absorption line required for a given experiment. To verify that the QCL you receive will meet your needs, please download its data sheet. Click "Choose Item" below, then click on the Docs icon (Docs Icon) next to the serial number of the laser.

Gas-Phase Spectroscopy Using Distributed Feedback Lasers

Distributed Feedback Quantum Cascade Lasers (DFB QCLs) offer many attractive features for spectroscopy. They emit at a single wavelength within the mid-IR, where many gaseous species characteristically absorb. Moreover, their emission wavelength is easily tuned (typical tuning range: 1 - 5 cm-1) by changing the drive current and operating temperature of the laser, making them ideal for isolating narrow gas absorption lines. Finally, they offer relatively high output power (typically 40 - 120 mW at rollover current), helping improve measurement sensitivity.

Thorlabs' DFB QCLs emit at wavelengths that range from 4.00 to 11.00 µm (2500 cm-1 to 909 cm-1). If we do not stock the wavelength required for your application, custom wavelengths are available by contacting Tech Support.

The tuning range of individual DFB QCLs depends greatly on the actual laser device. Each DFB QCL is a unique device with its own threshold current, rollover current, and spectrum. With typical lasers, it is usually preferable to operate the laser at or near the rollover current, since the output power is lowest at threshold and highest at rollover. On the other hand, the wavelength of DFB QCLs changes as a function of the current, so operating at the rollover current is not always possible in spectroscopy measurements, which require specific wavelengths. (It is important to note that the output power is not constant over the entire tuning range.)

DFB QCLs and ICLs are ideal for use in photoacoustic spectroscopy, a technique based on the photoacoustic effect that is able to accurately detect trace gas concentrations for a wide variety of applications. Thorlabs offers an Acoustic Detection Module that can be used with our DFB QCLs and ICLs to build custom QEPAS sensors that target the absorption of a specific gas. We also offer a Quartz-Enhanced Photoacoustic Sensor that targets a methane absorption line to detect trace amounts of methane in a gas.

 

Tuning Example
To demonstrate DFB QCLs' tunability, we measured the center wavelength of a previous-generation QD4580CM1 laser as a function of drive current, from threshold to near rollover, at 15 °C and 25 °C. Over the entire temperature and drive current range, we obtained center wavelengths from 4.568 µm to 4.586 µm (2189.14 cm-1 to 2180.77 cm-1), spanning a range of 18 nm (8.37 cm-1), with output power ranging from 3.2 mW (at threshold current) to 39.1 mW (at near-rollover current). Since the laser is capable of operating at 35 °C, even broader wavelength tuning is also achievable.

DFB QCL Temperature Tuning
Click to Enlarge

DFB QCL Center Frequency as Function of Temperature and Drive Current
Sample QD4580CM1a Spectrum and Output Power
Current 15 °C 25 °C
Center Frequency Output
Power
Center Frequency Output
Power
300 mA 2189.14 cm-1 (4.568 µm) 8.4 mW 2187.34 cm-1 (4.572 µm) 3.2 mW
350 mA 2188.12 cm-1 (4.570 µm) 19.6 mW 2186.26 cm-1 (4.574 µm) 11.9 mW
400 mA 2186.92 cm-1 (4.573 µm) 28.3 mW 2185.05 cm-1 (4.577 µm) 18.9 mW
450 mA 2185.71 cm-1 (4.575 µm) 33.7 mW 2183.78 cm-1 (4.579 µm) 23.5 mW
500 mA 2184.33 cm-1 (4.578 µm) 37.1 mW 2182.34 cm-1 (4.582 µm) 26.6 mW
550 mA 2182.76 cm-1 (4.581 µm) 39.1 mW 2180.77 cm-1 (4.586 µm) 28.2 mW
  • This previous-generation item is not available for individual purchase.

ECL, DFB, VHG-Stabilized, and DBR Single-Frequency Lasers

ECL Laser Diagram
Click to Enlarge

Figure 1: ECL Lasers have a Grating Outside of the Gain Chip

A wide variety of applications require tunable single-frequency operation of a laser system. In the world of diode lasers, there are currently four main configurations to obtain a single-frequency output: external cavity laser (ECL), distributed feedback (DFB), volume holographic grating (VHG), and distributed Bragg reflector (DBR). All four are capable of single-frequency output through the utilization of grating feedback. However, each type of laser uses a different grating feedback configuration, which influences performance characteristics such as output power, tuning range, and side mode suppression ratio (SMSR). We discuss below some of the main differences between these four types of single-frequency diode lasers.

External Cavity Laser
The External Cavity Laser (ECL) is a versatile configuration that is compatible with most standard free space diode lasers. This means that the ECL can be used at a variety of wavelengths, dependent upon the internal laser diode gain element. A lens collimates the output of the diode, which is then incident upon a grating (see Figure 1). The grating provides optical feedback and is used to select the stabilized output wavelength. With proper optical design, the external cavity allows only a single longitudinal mode to lase, providing single-frequency laser output with high side mode suppression ratio (SMSR > 45 dB).

One of the main advantages of the ECL is that the relatively long cavity provides extremely narrow linewidths (<1 MHz). Additionally, since it can incorporate a variety of laser diodes, it remains one of the few configurations that can provide narrow linewidth emission at blue or red wavelengths. The ECL can have a large tuning range (>100 nm) but is often prone to mode hops, which are very dependent on the ECL's mechanical design as well as the quality of the antireflection (AR) coating on the laser diode.

DBR Laser Diagram
Click to Enlarge

Figure 2: DFB Lasers Have a Bragg Reflector Along the Length of the Active Gain Medium

Distributed Feedback Laser
The Distributed Feedback (DFB) Laser (available in NIR and MIR) incorporates the grating within the laser diode structure itself (see Figure 2). This corrugated periodic structure coupled closely to the active region acts as a Bragg reflector, selecting a single longitudinal mode as the lasing mode. If the active region has enough gain at frequencies near the Bragg frequency, an end reflector is unnecessary, relying instead upon the Bragg reflector for all optical feedback and mode selection. Due to this “built-in” selection, a DFB can achieve single-frequency operation over broad temperature and current ranges. To aid in mode selection and improve manufacturing yield, DFB lasers often utilize a phase shift section within the diode structure as well.

The lasing wavelength for a DFB is approximately equal to the Bragg wavelength:

DBR Equation

where λ is the wavelength, neff is the effective refractive index, and Λ is the grating period. By changing the effective index, the lasing wavelength can be tuned. This is accomplished through temperature and current tuning of the DFB.

The DFB has a relatively narrow tuning range: about 2 nm at 850 nm, about 4 nm at 1550 nm, or at least 1 cm-1 in the mid-IR (4.00 - 11.00 µm). However, over this tuning range, the DFB can achieve single-frequency operation, which means that this is a continuous tuning range without mode hops. Because of this feature, DFBs have become a popular and majority choice for real-world applications such as telecom and sensors. Since the cavity length of a DFB is rather short, the linewidths are typically in the 1 MHz to 10 MHz range. Additionally, the close coupling between the grating structure and the active region results in lower maximum output power compared to ECL and DBR lasers.

DBR Laser Diagram
Click to Enlarge

Figure 3: VHG Lasers have a Volume Holographic Grating Outside of the Active Gain Medium

Volume-Holographic-Grating-Stabilized Laser
A Volume-Holographic-Grating-(VHG)-Stabilized Laser also uses a Bragg reflector, but in this case a transmission grating is placed in front of the laser diode output (see Figure 3). Since the grating is not part of the laser diode structure, it can be thermally decoupled from the laser diode, improving the wavelength stability of the device. The grating typically consists of a piece of photorefractive material (typically glass) which has a periodic variation in the index of refraction. Only the wavelength of light that satisfies the Bragg condition for the grating is reflected back into the laser cavity, which results in a laser with extremely wavelength-stable emission. A VHG-Stabilized laser can produce output with a similar linewidth to a DFB laser at higher powers that is wavelength-locked over a wide range of currents and temperatures.

DBR Laser Diagram
Click to Enlarge

Figure 4: DBR Lasers have a Bragg Reflector Outside of the Active Gain Medium

Distributed Bragg Reflector Laser
Similar to DFBs, Distributed Bragg Reflector (DBR) lasers incorporate an internal grating structure. However, whereas DFB lasers incorporate the grating structure continuously along the active region (gain region), DBR lasers place the grating structure(s) outside this region (see Figure 4). In general a DBR can incorporate various regions not typically found in a DFB that yield greater control and tuning range. For instance, a multiple-electrode DBR laser can include a phase-controlled region that allows the user to independently tune the phase apart from the grating period and laser diode current. When utilized together, the DBR can provide single-frequency operation over a broad tuning range. For example, high end sample-grating DBR lasers can have a tuning range as large as 30 - 40 nm. Unlike the DFB, the output is not mode hop free; hence, careful control of all inputs and temperature must be maintained.

In contrast to the complicated control structure for the multiple-electrode DBR, a simplified version of the DBR is engineered with just one electrode. This single-electrode DBR eliminates the complications of grating and phase control at the cost of tuning range. For this architecture type, the tuning range is similar to a DFB laser but will mode hop as a function of the applied current and temperature. Despite the disadvantage of mode hops, the single-electrode DBR does provide some advantages over its DFB cousin, namely higher output power because the grating is not continuous along the length of the device. Both DBR and DFB lasers have similar laser linewidths. Currently, Thorlabs offers only single-electrode DBR lasers.

Conclusion
ECL, DFB, VHG, and DBR laser diodes provide single-frequency operation over their designed tuning range. The ECL can be designed for a larger selection of wavelengths than either the DFB or DBR. While prone to mode hops, it also provides the narrowest linewidth (<1 MHz) of the three choices. In appropriately designed instruments, ECLs can also provide extremely broad tuning ranges (>100 nm).

The DFB laser is the most stable single-frequency, tunable laser of the four. It can provide mode-hop-free performance over its entire tuning range, making it one of the most popular forms of single-frequency laser for much of industry. It has the lowest output power due to inherent properties of the continuous grating feedback structure.

The VHG laser provides the most stable wavelength performance over a range of temperatures and currents and can provide higher powers than are typical in DFB lasers. This stability makes it excellent for use in OEM applications.

The single-electrode DBR laser provides similar linewidth and tuning range as the DFB (<5 nm). However, the single-electrode DBR will have periodic mode hops in its tuning curve.

Laser Packages of QCLs
Click to Enlarge

Some of Our Available Packages
Wire Bonding
Click for Details

Wire Bonding a Quantum Cascade Laser on a C-Mount

Custom & OEM Quantum Cascade and Interband Cascade Lasers

At our semiconductor manufacturing facility in Jessup, Maryland, we build fully packaged mid-IR lasers and gain chips. Our engineering team performs in-house epitaxial growth, wafer fabrication, and laser packaging. We maintain chip inventory from 3 µm to 12 µm, and our vertically integrated facilities are well equipped to fulfill unique requests.

High-Power Fabry-Perot QCLs
For Fabry-Perot lasers, we can reach multi-watt output power on certain custom orders. The available power depends upon several factors, including the wavelength and the desired package.

DFB QCLs at Custom Wavelengths
For distributed feedback (DFB) lasers, we can deliver a wide range of center wavelengths with user-defined wavelength precision. Our semiconductor specialists will take your application requirements into account when discussing the options with you.

The graphs below and photos to the right illustrate some of our custom capabilities. Please visit our semiconductor manufacturing capabilities presentation to learn more.

Contact Thorlabs

Custom QCL Wavelengths
Click to Enlarge

Available Wavelengths for Custom QCLs and ICLs
High-Power QCLs
Click to Enlarge

Maximum Output Power of Custom Fabry-Perot QCLs
QCL Gain Chips
Click to Enlarge

Electroluminescence Spectra of Available Gain Chip Material

Insights into QCLs and ICLs

Scroll down to read about:

  • QCLs and ICLs: Operating Limits and Thermal Rollover

Click here for more insights into lab practices and equipment.

 

QCLs and ICLs: Operating Limits and Thermal Rollover

L-I curves for QCL mount held at different temperatures
Click to Enlarge

Figure 2: This set of L-I curves for a QCL laser illustrates that the mount temperature can affect the peak operating temperature, but that using a temperature controlled mount does not remove the danger of applying a driving current large enough to exceed the rollover point and risk damaging the laser.
L-I curve for QCL laser, rollover region indicated
Click to Enlarge

Figure 1: This example of an L-I curve for a QCL laser illustrates the typical non-linear slope and rollover region exhibited by QCL and ICL lasers. Operating parameters determine the heat load carried by the lasing region, which influences the peak output power. This laser was installed in a temperature controlled mount set to 25 °C.

The light vs. driving current (L-I) curves measured for quantum and interband cascade Lasers (QCLs and ICLs) include a rollover region, which is enclosed by the red box in Figure 1.

The rollover region includes the peak output power of the laser, which corresponds to a driving current of just under 500 mA in this example. Applying higher drive currents risks damaging the laser.

Laser Operation
These lasers operate by forcing electrons down a controlled series of energy steps, which are created by the laser's semiconductor layer structure and an applied bias voltage. The driving current supplies the electrons.

An electron must give up some of its energy to drop down to a lower energy level. When an electron descends one of the laser's energy steps, the electron loses energy in the form of a photon. But, the electron can also lose energy by giving it to the semiconductor material as heat, instead of emitting a photon.

Heat Build Up
Lasers are not 100% efficient in forcing electrons to surrender their energy in the form of photons. The electrons that lose their energy as heat cause the temperature of the lasing region to increase.

Conversely, heat in the lasing region can be absorbed by electrons. This boost in energy can scatter electrons away from the path leading down the laser's energy steps. Later, scattered electrons typically lose energy as heat, instead of as photons.

As the temperature of the lasing region increases, more electrons are scattered, and a smaller fraction of them produce light instead of heat. Rising temperatures can also result in changes to the laser's energy levels that make it harder for electrons to emit photons. These processes work together to increase the temperature of the lasing region and to decrease the efficiency with which the laser converts current to laser light.

Operating Limits are Determined by the Heat Load
Ideally, the slope of the L-I curve would be linear above the threshold current, which is around 270 mA in Figure 1. Instead, the slope decreases as the driving current increases, which is due to the effects from the rising temperature of the lasing region. Rollover occurs when the laser is no longer effective in converting additional current to laser light. Instead, the extra driving creates only heat. When the current is high enough, the strong localized heating of the laser region will cause the laser to fail.

A temperature controlled mount is typically necessary to help manage the temperature of the lasing region. But, since the thermal conductivity of the semiconductor material is not high, heat can still build up in the lasing region. As illustrated in Figure 2, the mount temperature affects the peak optical output power but does not prevent rollover.

The maximum drive current and the maximum optical output power of QCLs and ICLs depend on the operating conditions, since these determine the heat load of the lasing region.

Date of Last Edit: Dec. 4, 2019


Posted Comments:
Ertuğrul Akın  (posted 2022-01-31 21:08:50.163)
Dear Sir/Madam, Can we modulate the the current for pulsed operation with 6230 Hz repetation rate?
cdolbashian  (posted 2022-02-10 12:16:07.0)
Thank you for reaching out to us at Thorlabs! Given the right modulation source, you can certainly modulate your device with this rep rate. Note that these DFB QCLs have a rise time on the order of hundreds of ns, and as a result, you will have to select your pulse duration at 6.23kHz such that it is not lower than the rise time of your diode itself. I have contacted you directly to discuss this further.
stefan.piehler  (posted 2018-09-19 12:15:27.433)
Dear madam or sir, could you please comment on what pointing stability can be expected from this type of lasers when mounted in the corresponding thermally stabilized C-Mount laser mount? Regards, Stefan
YLohia  (posted 2018-09-27 08:35:23.0)
Hello Stefan, thank you for contacting Thorlabs. Our turnkey system specifies a pointing stability of +/- 2 degrees, so this would be a good estimate. Please note that since you're going to use the part while mounted, the limitations will come from vibrational stability and temperature stability of the mount. Unfortunately, we don’t have any data on this from LDMC20.
j.murray  (posted 2014-08-29 07:08:14.427)
Dear Sir/Madam, I would like some information on the QD9550CM1 quantum cascade laser. Specifically I would like to know what the laser line width is so this device. The information suggest the profile shown is limited by the measurement. For my use I would like a line width of order 0.05cm-1. Kind regards, Jon.
jlow  (posted 2014-08-29 02:23:02.0)
Response from Jeremy at Thorlabs: The actual line width of the DFB QCL is indeed much lower than the graph shown on the website. From previous testing, it should be <25MHz (the limit of our measurement system).

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput PowerOperating
Current
Operating
Voltage
Beam DivergenceLaser ModePackage
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single Transverse ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single Transverse ModeØ5.6 mm
LP405C1405 nm30 mW75 mA4.3 V1.4 mrad1.4 mradSingle Transverse ModeØ3.8 mm, SM Pigtail with Collimator
L405G2405 nm35 mW50 mA4.9 V10°21°Single Transverse ModeØ3.8 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single Transverse ModeØ5.6 mm
L405A1405 nm175 mW (Min)150 mA5.0 V20°Single Transverse ModeØ5.6 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
LP450-SF25450 nm25 mW75 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L450G3450 nm100 mW (Min)80 mA5.2 V8.4°21.5°Single Transverse ModeØ3.8 mm
L450G2450 nm100 mW (Min)80 mA5.0 V8.4°21.5°Single Transverse ModeØ5.6 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
L473P100473 nm100 mW120 mA5.7 V1024Single Transverse ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP488-SF20G488 nm20 mW80 mA5.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V23°Single Transverse ModeØ5.6 mm
LP515-SF3515 nm3 mW50 mA5.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L515A1515 nm10 mW50 mA5.4 V6.5°21°Single Transverse ModeØ5.6 mm
LP520-SF15A520 nm15 mW100 mA7.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP520-SF15520 nm15 mW140 mA6.5 V--Single Transverse ModeØ9 mm, SM Pigtail
L520A1520 nm30 mW (Min)80 mA5.5 V22°Single Transverse ModeØ5.6 mm
PL520520 nm50 mW250 mA7.0 V22°Single Transverse ModeØ3.8 mm
L520P50520 nm45 mW150 mA7.0 V22°Single Transverse ModeØ5.6 mm
L520A2520 nm110 mW (Min)225 mA5.9 V22°Single Transverse ModeØ5.6 mm
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single Transverse ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW60 mA2.2 V--Single Transverse ModeØ9.0 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single Transverse ModeØ5.6 mm
HL6312G635 nm5 mW50 mA<2.7 V31°Single Transverse ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW60 mA2.2 V31°Single Transverse ModeØ9 mm
HL6322G635 nm15 mW75 mA2.4 V30°Single Transverse ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single Transverse ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single Transverse ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single Transverse ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L637G1637 nm1200 mW1100 mA2.5 V10°32°MultimodeØ9 mm (non-standard)
L638P040638 nm40 mW92 mA2.4 V10°21°Single Transverse ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single Transverse ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single Transverse ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.4 V21°Single Transverse ModeØ5.6 mm
HL6323MG639 nm30 mW100 mA2.5 V8.5°30°Single Transverse ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW110 mA2.5 V--Single Transverse ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW120 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6366DG642 nm80 mW150 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6385DG642 nm150 mW250 mA2.6 V17°Single Transverse ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single Transverse ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW75 mA2.6 V8.5°22°Single Transverse ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single Transverse ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single Transverse ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single Transverse ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single Transverse ModeØ5.6 mm
L670VH1670 nm1 mW2.5 mA2.6 V10°10°Single Transverse ModeTO-46
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single Transverse ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single Transverse ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single Transverse ModeØ5.6 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW70 mA2.3 V21°Single Transverse ModeØ5.6 mm
HL6738MG690 nm30 mW85 mA2.5 V8.5°19°Single Transverse ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
LP730-SF15730 nm15 mW70 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7302MG730 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
L760VH1760 nm0.5 mW3 mA (Max)2.2 V12°12°Single FrequencyTO-46
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L763VH1763 nm0.5 mW3 mA (Max)2.0 V10°10°Single FrequencyTO-46
DBR767PN767 nm23 mW220 mA1.87 V--Single FrequencyButterfly, PM Pigtail
DBR770PN770 nm35 mW220 mA1.92 V--Single FrequencyButterfly, PM Pigtail
L780P010780 nm10 mW24 mA1.8 V30°Single Transverse ModeØ5.6 mm
DBR780PN780 nm45 mW250 mA1.9 V--Single FrequencyButterfly, PM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single Transverse ModeØ5.6 mm
LPS-PM785-FC785 nm6.5 mW60 mA---Single Transverse ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single Transverse ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L785P25785 nm25 mW45 mA1.9 V30°Single Transverse ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV785P785 nm50 mW410 mA2.1 V--Single FrequencyButterfly, PM Pigtail
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW125 mA2.0 V10°17°Single Transverse ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
FPL785P785 nm200 mW500 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single Transverse ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Transverse Mode3 mm x 5 mm Submount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single Transverse ModeØ9 mm
FPV785M785 nm600 mW1100 mA1.9 V--MultimodeButterfly, MM Pigtail
L795VH1795 nm0.25 mW1.2 mA1.8 V20°12°Single FrequencyTO-46
DBR795PN795 nm40 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR808PN808 nm42 mW250 mA2 V--Single FrequencyButterfly, PM Pigtail
LP808-SA60808 nm60 mW150 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-808-0150808 nm150 mW180 mA1.9 V17°Single Transverse ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
FPL808P808 nm200 mW600 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL808S808 nm200 mW750 mA2.3 V--Single Transverse ModeButterfly, SM Pigtail
L808H1808 nm300 mW400 mA2.1 V14°Single Transverse ModeØ9 mm
LD808-SE500808 nm500 mW750 mA2.2 V14°Single Transverse ModeØ9 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
DBR816PN816 nm45 mW250 mA1.95 V--Single FrequencyButterfly, PM Pigtail
LP820-SF80820 nm80 mW230 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single Transverse ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single Transverse ModeØ5.6 mm
DBR828PN828 nm24 mW250 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-830-FC830 nm10 mW120 mA---Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW50 mA2.0 V--Single Transverse ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
L830H1830 nm250 mW3 A (Max)2 V10°Single Transverse ModeØ9 mm
FPL830P830 nm300 mW900 mA2.22 V--Single Transverse ModeButterfly, PM Pigtail
FPL830S830 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD830-SE650830 nm650 mW900 mA2.3 V13°Single Transverse ModeØ9 mm
LD830-MA1W830 nm1 W2 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single Transverse ModeØ5.6 mm
L850VH1850 nm1 mW6 mA (Max)2 V12°12°Single FrequencyTO-46
L850P010850 nm10 mW50 mA2 V10°30°Single Transverse ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single Transverse ModeØ5.6 mm
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV852P852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, PM Pigtail
DBR852PN852 nm24 mW300 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
LP852-SF60852 nm60 mW150 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P100852 nm100 mW120 mA1.9 V28°Single Transverse ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single Transverse ModeØ9 mm
L852SEV1852 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
L852H1852 nm300 mW415 mA (Max)2 V15°Single Transverse ModeØ9 mm
FPL852P852 nm300 mW900 mA2.35 V--Single Transverse ModeButterfly, PM Pigtail
FPL852S852 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single Transverse ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single Transverse ModeØ5.6 mm
L895VH1895 nm0.2 mW1.4 mA1.6 V20°13°Single FrequencyTO-46
DBR895PN895 nm12 mW300 mA2 V--Single FrequencyButterfly, PM Pigtail
LP904-SF3904 nm3 mW30 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L904P010904 nm10 mW50 mA2.0 V10°30°Single Transverse ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
DBR935PN935 nm13 mW300 mA1.75 V--Single FrequencyButterfly, PM Pigtail
LP940-SF30940 nm30 mW90 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single Transverse ModeØ9 mm
L960H1960 nm250 mW400 mA2.1 V11°12°Single Transverse ModeØ9 mm
FPV976S976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, SM Pigtail
FPV976P976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, PM Pigtail
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L976SEV1976 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
BL976-SAG3976 nm300 mW470 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
BL976-PAG500976 nm500 mW830 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single Transverse ModeButterfly, PM Pigtail
L980P010980 nm10 mW25 mA2 V10°30°Single Transverse ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW50 mA1.5 V10°35°Single Transverse ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
LP980-SA60980 nm60 mW230 mA2.0 V--Single Transverse ModeØ9.0 mm, SM Pigtail
L980H1980 nm200 mW300 mA (Max)2.0 V13°Single Transverse ModeØ9 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
DBR1060SN1060 nm130 mW650 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1060PN1060 nm130 mW650 mA1.8 V--Single FrequencyButterfly, PM Pigtail
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single Transverse ModeØ9 mm
L1064H11064 nm300 mW700 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
L1064H21064 nm450 mW1100 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
DBR1083PN1083 nm100 mW500 mA1.75 V--Single FrequencyButterfly, PM Pigtail
L1270P5DFB1270 nm5 mW15 mA1.1 VSingle FrequencyØ5.6 mm
L1290P5DFB1290 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1310-PAD21310 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single Transverse ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1053P1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single Transverse ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1330P5DFB1330 nm5 mW14 mA1.0 VSingle FrequencyØ5.6 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1425-PAG5001425 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL1436-PAG5001436 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1456-PAG5001456 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1470P5DFB1470 nm5 mW19 mA1.0 VSingle FrequencyØ5.6 mm
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
L1490P5DFB1490 nm5 mW24 mA1.0 VSingle FrequencyØ5.6 mm
L1510P5DFB1510 nm5 mW20 mA1.0 VSingle FrequencyØ5.6 mm
L1530P5DFB1530 nm5 mW21 mA1.0 VSingle FrequencyØ5.6 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1550-PAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.0 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single Transverse ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, SM Pigtail
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, PM Pigtail
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, SM Pigtail
FPL1009P1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, PM Pigtail
ULN15PC1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
ULN15PT1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single Transverse ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
DFB15501555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550N1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550P1555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
DFB1550PN1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
L1570P5DFB1570 nm5 mW25 mA1.0 VSingle FrequencyØ5.6 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1054P1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1054T1625 nm200 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
DFB16421642 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1642P1642 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
DFB16461646 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1646P1646 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1059S1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1059P1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
DFB16501650 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1650P1650 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
DFB16541654 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1654P1654 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1940S1940 nm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000S2 µm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000C2 µm30 mW400 mA5.2 V19°Single Transverse ModeChip on Submount
ID3250HHLH3.00 - 3.50 µm (DFB)5 mW400 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
IF3400T13.40 µm (FP)30 mW300 mA4 V40°70°Single Transverse ModeØ9 mm
ID3750HHLH3.50 - 4.00 µm (DFB)5 mW300 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF3850T13.85 µm (FP)200 mW600 mA (Max)13.5 V30°40°Single Transverse ModeØ9 mm
QF3850HHLH3.85 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF4040HHLH4.05 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD4500CM14.00 - 5.00 µm (DFB)40 mW500 mA (Max)10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QD4500HHLH4.00 - 5.00 µm (DFB)80 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4050T24.05 µm (FP)70 mW250 mA12 V30°40°Single Transverse ModeØ9 mm
QF4050C24.05 µm (FP)300 mW400 mA12 V3042Single Transverse ModeTwo-Tab C-Mount
QF4050T14.05 µm (FP)300 mW600 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single Transverse ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single Transverse ModeD-Mount
QD4472HH4.472 µm (DFB)85 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4600T24.60 µm (FP)200 mW500 mA (Max)13.0 V30°40°Single Transverse ModeØ9 mm
QF4600T14.60 µm (FP)400 mW800 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4600C24.60 µm (FP)600 mW600 mA12 V30°42°Single Transverse ModeTwo-Tab C-Mount
QF4600T34.60 µm (FP)1000 mW800 mA (Max)13 V30°40°Single Transverse ModeØ9 mm
QF4600D44.60 µm (FP)2500 mW1800 mA12.5 V40°30°Single Transverse ModeD-Mount
QF4600D34.60 µm (FP)3000 mW1700 mA12.5 V30°40°Single Transverse ModeD-Mount
QD4602HH4.602 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4650HHLH4.65 µm (FP)1500 mW (Min)1100 mA12 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD5500CM15.00 - 6.00 µm (DFB)40 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5500HHLH5.00 - 6.00 µm (DFB)150 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD5250C25.20 - 5.30 µm (DFB)60 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5263HH5.263 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6500CM16.00 - 7.00 µm (DFB)40 mW650 mA (Max)10 V35°50°Single FrequencyTwo-Tab C-Mount
QD6500HHLH6.00 - 7.00 µm (DFB)80 mW600 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6134HH6.134 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500CM17.00 - 8.00 µm (DFB)40 mW600 mA (Max)10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500HHLH7.00 - 8.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500DM17.00 - 8.00 µm (DFB)100 mW600 mA (Max)11.5 V40°55°Single FrequencyD-Mount
QD7416HH7.416 µm (DFB)100 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7716HH7.716 µm (DFB)30 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF7900HB7.9 µm (FP)700 mW1600 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD7901HH7.901 µm (DFB)50 mW700 mA (Max)10 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD8050CM18.00 - 8.10 µm (DFB)100 mW1000 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW900 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF8450C28.45 µm (FP)300 mW750 mA9 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF8500HB8.5 µm (FP)500 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD8650CM18.60 - 8.70 µm (DFB)50 mW900 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8912HH8.912 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9500CM19.00 - 10.00 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9062HH9.062 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF9150C29.15 µm (FP)200 mW850 mA11 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF9200HB9.2 µm (FP)250 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF9500T19.5 µm (FP)300 mW550 mA12 V40°55°Single Transverse ModeØ9 mm
QD9550C29.50 - 9.60 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single Transverse ModeTwo-Tab C-Mount
QD9697HH9.697 µm (DFB)80 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10500CM110.00 - 11.00 µm (DFB)40 mW600 mA (Max)10 V40°55°Single FrequencyTwo-Tab C-Mount
QD10500HHLH10.00 - 11.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10530HH10.530 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10549HH10.549 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10622HH10.622 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL

The rows shaded green above denote single-frequency lasers.
Back to Top

4.00 - 5.00 µm Center Wavelength DFB QCL

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD4500CM1 info Varies from 4.00 to 5.00 µm
(2500 - 2000 cm-1)
2 cm-1 40 mW (Typ.) 500 mAd Yes Single Frequencye N/A
  • This laser emits at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please contact us.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number.
  • Single Longitudinal Mode and Single Transverse Mode
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD4500CM1 Support Documentation
QD4500CM1DFB QCL, 4.00 - 5.00 μm CWL, 2 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Back to Top

5.00 - 6.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD5500CM1 info Varies from 5.00 to 6.00 µm
(2000 to 1667 cm-1)
2.5 cm-1 40 mW (Typ.) 700 mAd Yes Single Frequencye N/A
QD5250C2 info Varies from 5.20 to 5.30 µm
(1923 - 1887 cm-1)
2.5 cm-1 60 mW (Typ.) 700 mAd Yes Single Frequencye NO (Nitric Oxide)f
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please contact us.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number.
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of nitric oxide can be found by clicking the blue info icon above (info icon) and selecting the Nitric Oxide tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD5500CM1 Support Documentation
QD5500CM1DFB QCL, 5.00 - 6.00 μm CWL, 2.5 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD5250C2 Support Documentation
QD5250C2DFB QCL, 5.20 - 5.30 μm CWL, 2.5 cm⁻¹ Tuning, 60 mW, Two-Tab C-Mount
$6,426.00
Today
Back to Top

6.00 - 7.00 µm Center Wavelength DFB QCL

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD6500CM1 info Varies from 6.00 to 7.00 µm
(1667 - 1429 cm-1)
2 cm-1 40 mW (Typ.) 650 mAd Yes Single Frequencye N/A
  • This laser emits at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please contact us.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number.
  • Single Longitudinal Mode and Single Transverse Mode
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD6500CM1 Support Documentation
QD6500CM1DFB QCL, 6.00 - 7.00 μm CWL, 2 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Back to Top

7.00 - 8.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD7500CM1d info Varies from 7.00 to 8.00 µm
(1429 - 1250 cm-1)
1.5 cm-1 40 mW (Typ.) 600 mAe Yes Single Frequencyf N/A
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please contact us.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • If broadband emission is preferred, please consider our 7.70 µm Fabry-Perot Lasers.
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number.
  • Single Longitudinal Mode and Single Transverse Mode
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD7500CM1 Support Documentation
QD7500CM1DFB QCL, 7.00 - 8.00 μm CWL, 1.5 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Back to Top

8.00 - 9.00 µm Center Wavelength DFB QCLs


Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasesc
QD8050CM1 info Varies from 8.00 to 8.10 µm
(1250 - 1235 cm-1)
2.5 cm-1 100 mW (Typ.) 1000 mAd Yes Single Frequencye CH4 (Methane)
HONO (Nitrous Acid)
QD8500CM1f info Varies from 8.00 to 9.00 µm
(1250 - 1111 cm-1)
2.5 cm-1 100 mW (Typ.) 900 mAd Yes Single Frequencye N/A
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please contact us.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number.
  • Single Longitudinal Mode and Single Transverse Mode
  • If broadband emission is preferred, please consider our 8.35 µm Fabry-Perot Lasers.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD8050CM1 Support Documentation
QD8050CM1Customer Inspired! DFB QCL, 8.00 - 8.10 μm CWL, 2.5 cm⁻¹ Tuning, 100 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD8500CM1 Support Documentation
QD8500CM1DFB QCL, 8.00 - 9.00 μm CWL, 2.5 cm⁻¹ Tuning, 100 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Back to Top

9.00 - 10.00 µm Center Wavelength DFB QCLs

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD9500CM1 info Varies from 9.00 to 10.00 µm
(1111 - 1000 cm-1)
2.5 cm-1 60 mW (Typ.) 800 mAd Yes Single Frequencye N/A
QD9550C2 info Varies from 9.50 to 9.60 µm
(1042 - 1053 cm-1)
2.5 cm-1 60 mW (Typ.) 800 mAd Yes Single Frequencye NH3 (Ammonia)f
  • This laser emits at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please contact us.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number.
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of ammonia can be found by clicking the blue info icon above (info icon) and selecting the Ammonia tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD9500CM1 Support Documentation
QD9500CM1DFB QCL, 9.00 - 10.00 μm CWL, 2.5 cm⁻¹ Tuning, 60 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Choose ItemQD9550C2 Support Documentation
QD9550C2DFB QCL, 9.50 - 9.60 μm CWL, 2.5 cm⁻¹ Tuning, 60 mW, Two-Tab C-Mount
$6,426.00
Today
Back to Top

10.00 - 11.00 µm Center Wavelength DFB QCL

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD10500CM1 info Varies from 10.00 to 11.00 µm
(1000 - 909 cm-1)
2 cm-1 40 mW (Typ.) 600 mAd Yes Single Frequencye N/A
  • This laser emits at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please contact us.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • See the Spectroscopy Tab for Further Discussion
  • Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number.
  • Single Longitudinal Mode and Single Transverse Mode
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD10500CM1 Support Documentation
QD10500CM1DFB QCL, 10.00 - 11.00 μm CWL, 2 cm⁻¹ Tuning, 40 mW, Two-Tab C-Mount
$6,426.00
Volume Pricing
Today
Last Edited: Aug 06, 2013 Author: Dan Daranciang