Thorlabs Inc.
Visit the Free-Space Si Avalanche Photodetectors page for pricing and availability information

Free-Space Si Avalanche Photodetectors

  • High-Speed Response Up to 1 GHz
  • Conversion Gains up to 2.65 × 109 V/W
  • Wavelength Range of 200 - 1000 nm or 400 - 1000 nm
  • Temperature-Compensated and Variable-Gain Versions Available

APD210

High-Speed APD

APD130A2

Temperature-Compensated APD

APD430A

Variable-Gain,
Temperature-Compensated APD

Hide Overview

OVERVIEW

Free-Space Si APD Selection Guide
Item # Wavelength
Range
Bandwidth
(3 dB)
Type (Quick Links)
APD130A2(/M) 200 - 1000 nm DC - 50 MHz Temperature Compensated
APD130A(/M) 400 - 1000 nm
APD440A2 200 - 1000 nm DC - 0.1 MHz Variable Gain,
Temperature Compensated
APD410A2(/M) DC - 10 MHz
APD430A2(/M) DC - 400 MHz
APD440A 400 - 1000 nm DC - 0.1 MHz
APD410A(/M) DC - 10 MHz
APD430A(/M) DC - 400 MHz
APD410 200 - 1000 nm 5 - 900 MHz Variable Gain,
Temperature Compensated,
High Speed
APD210 400 - 1000 nm 5 - 1000 MHz
APD Temperature Stability
Click to Enlarge

The above plot shows the M factor stability of our temperature-compensated avalanche photodetectors. The blue shaded region indicates the temperature range over which the M factor stability is guaranteed to within ±3%.

Features

  • Noise Equivalent Powers (NEP) as Low as 2.5 fW/√Hz
  • Max Bandwidth Up to 1 GHz at 3 dB
  • Temperature-Compensated Versions Provide M Factor Stability of ≤±3% Over 18 to 28 °C
  • Variable Gain Detectors Available: M Factor from 5 to 50 or 10 to 100
  • Free-Space Optical Input with Internal SM05 and External SM1 Threading for Lens Tubes
  • Power Supply Included

Thorlabs' Free-Space Silicon Avalanche Photodetectors (APD) are designed to offer increased sensitivity and lower noise compared to standard PIN detectors, making them ideal for applications with low optical power levels. In addition to our standard APDs, versions featuring variable gain (i.e., M factor) and/or temperature compensation are offered.

In general, avalanche photodiodes use an internal gain mechanism to increase sensitivity. A high reverse bias voltage is applied to the diodes to create a strong electric field. When an incident photon generates an electron-hole pair, the electric field accelerates the electrons, leading to the production of secondary electrons by impact ionization. The resulting electron avalanche can produce a gain factor of several hundred times, described by a multiplication factor, M, that is a function of both the reverse bias voltage and temperature. In general, the M factor increases with lower temperatures and decreases with higher temperatures. Similarly, the M factor will increase when the reverse bias voltage is raised and decrease when the reverse bias voltage is lowered.

Our APD130A2(/M) and APD130A(/M) temperature-compensated APDs feature integrated thermistors that adjust the bias voltage to compensate for the effect of temperature changes on the M factor. A comparison with our non-temperature-compensated APDs is provided in the graph to the right.

In addition to being temperature compensated, our variable-gain APD400 series detectors allow the reverse bias voltage across the diodes to be adjusted via a rotary knob on the side of the housing, which varies the M factor from 5 to 50 or 10 to 100.

Thorlabs offers Menlo Systems' APD410 and APD210 Variable-Gain Avalanche Photodetectors, which offer high-speed responses up to 900 MHz or 1 GHz at 3 dB, respectively. Additionally, we offer spectral-flattening filters that are designed to improve the response uniformity of our silicon photodiodes and detectors; click here to learn more.

A complete list of all of our APDs can be found on the Selection Guide tab. Please note that our Single Photon Detectors are the only avalanche photodetectors suitable for single photon counting.

Avalanche Photodiode Selection Guidea
Free-Space Si APDs
Fiber-Coupled Si APDs
Free-Space InGaAs APDs
Fiber-Coupled InGaAs APDs
  • Please see the Selection Guide tab for a complete list of all of our avalanche photodetectors.

Hide Specs

SPECS

Click on the yellow boxes below to view specifications for each type of photodetector.


Hide Pin Diagrams

PIN DIAGRAMS

BNC Female Output (Photodetector)

BNC Female

APD Male (Power Cables)

Pinout for PDA Power Cable

APD Female (Photodetector)

Pinout for PDA Power Connector


Hide Fiber Coupling 

FIBER COUPLING 

Components for Fiber Couplinga
Item # Description
- Free-Space Avalanche Photodetector
LM1XY(/M) Translating Lens Mount for Ø1" Optics
SM1L10 SM1 (1.035"-40) Lens Tube, 1" Long
- Fiber Collimator
(Dependent on Fiber)
AD11F or AD12F SM1-Threaded Adapters for Ø11 or Ø12 mm Fiber Collimators
(Dependent on Collimator)
- Mounted Molded Aspheric Lens
(Dependent on Collimator)
S1TM06, S1TM08,
S1TM09, S1TM10,
or S1TM12
SM1-Threaded Adapter for Molded Aspheric Lens Cell
(Dependent on Lens)
Fiber Coupled Photodetector
Click to Enlarge

Output from a fiber is coupled into the photodetector using an aspheric lens to focus the signal onto the detector active area.

Fiber Coupling to Free-Space APDs

A fiber coupling mechanism can be constructed for our free-space APDs using standard optomechanics. In fiber coupling applications, we recommend taking into account the divergence of light from the fiber tip to ensure that all of the signal is focused onto the detector active area. When using a standard fiber connector adapter with a detector with an active area smaller than Ø1 mm, high coupling losses and degradation of the frequency response may occur.

To achieve high coupling efficiency, a fiber collimation package, focusing lens, and X-Y translator should be used, as shown in the photo to the right. The avalanche photodetector is shown with a fiber collimator, lens tube collimator adapter, lens tube, and X-Y translation mount. An adapter inside the lens tube holds an aspheric lens (not visible) to focus the collimated light onto the active area of the detector. The X-Y translation mount corrects for any centering issues.

Please note that Thorlabs also offers the APD431A fiber-coupled Si photodetector, which features an M12 x 0.15-threaded flange that is directly compatible with our M12 x 0.5-threaded fiber connector adapters. This compact and robust mechanism allows for easy fiber coupling with high reproducbility. The M12 x 0.5-threaded flange can be added to any of Thorlabs' Avalanche Photodetectors to provide robust fiber-coupling capabilities. Please contact Tech Support for more information.


Hide Pulse Calculations

PULSE CALCULATIONS

Pulsed Laser Emission: Power and Energy Calculations

Determining whether emission from a pulsed laser is compatible with a device or application can require referencing parameters that are not supplied by the laser's manufacturer. When this is the case, the necessary parameters can typically be calculated from the available information. Calculating peak pulse power, average power, pulse energy, and related parameters can be necessary to achieve desired outcomes including:

  • Protecting biological samples from harm.
  • Measuring the pulsed laser emission without damaging photodetectors and other sensors.
  • Exciting fluorescence and non-linear effects in materials.

Pulsed laser radiation parameters are illustrated in Figure 1 and described in the table. For quick reference, a list of equations are provided below. The document available for download provides this information, as well as an introduction to pulsed laser emission, an overview of relationships among the different parameters, and guidance for applying the calculations. 

 

Equations:

Period and repetition rate are reciprocal:    and 
Pulse energy calculated from average power:       
Average power calculated from pulse energy:        
Peak pulse power estimated from pulse energy:            

Peak power and average power calculated from each other:
  and
Peak power calculated from average power and duty cycle*:
*Duty cycle () is the fraction of time during which there is laser pulse emission.
Pulsed Laser Emission Parameters
Click to Enlarge

Figure 1: Parameters used to describe pulsed laser emission are indicated in the plot (above) and described in the table (below). Pulse energy (E) is the shaded area under the pulse curve. Pulse energy is, equivalently, the area of the diagonally hashed region. 

Parameter Symbol Units Description
Pulse Energy E Joules [J] A measure of one pulse's total emission, which is the only light emitted by the laser over the entire period. The pulse energy equals the shaded area, which is equivalent to the area covered by diagonal hash marks.
Period Δt  Seconds [s]  The amount of time between the start of one pulse and the start of the next.
Average Power Pavg Watts [W] The height on the optical power axis, if the energy emitted by the pulse were uniformly spread over the entire period.
Instantaneous Power P Watts [W] The optical power at a single, specific point in time.
Peak Power Ppeak Watts [W] The maximum instantaneous optical power output by the laser.
Pulse Width Seconds [s] A measure of the time between the beginning and end of the pulse, typically based on the full width half maximum (FWHM) of the pulse shape. Also called pulse duration.
Repetition Rate frep Hertz [Hz] The frequency with which pulses are emitted. Equal to the reciprocal of the period.

Example Calculation:

Is it safe to use a detector with a specified maximum peak optical input power of 75 mW to measure the following pulsed laser emission?

  • Average Power: 1 mW
  • Repetition Rate: 85 MHz
  • Pulse Width: 10 fs

The energy per pulse:

seems low, but the peak pulse power is:

It is not safe to use the detector to measure this pulsed laser emission, since the peak power of the pulses is >5 orders of magnitude higher than the detector's maximum peak optical input power.


Hide Selection Guide

SELECTION GUIDE

Avalanche Photodetector Selection Guide

Item # Detector
Type
Wavelength
Range
3 dB Bandwidth Active Area
Diameter
M Factor Typical Max
Responsivity
Max
Conversion Gaina
Variable
Gain
Temperature
Compensated
Fiber-Coupledb
APD440A2 UV Enhanced
Silicon APD
200 - 1000 nm DC - 0.1 MHz 1 mm 5 - 50 25 A/W @ 600 nm (M = 50) 1.25 x 109 V/W Yes! Yes! -
APD410A2 DC - 10 MHz 0.5 mm 5 - 50 25 A/W @ 600 nm (M = 50) 12.5 x 106 V/W Yes! Yes! -
APD130A2 DC - 50 MHz 1 mm 50 25 A/W @ 600 nm (M = 50) 2.5 x 106 V/W - Yes! -
APD430A2 DC - 400 MHz 0.2 mm 10 - 100 50 A/W @ 600 nm (M = 100) 5.0 x 105 V/W Yes! Yes! -
APD410 5 - 900 MHzc 0.2 mm 50 22 A/W @ 650 nm (M = 50) 4.5 x 104 V/Wd Yes! Yes! -
APD440A Silicon APD 400 - 1000 nm DC - 0.1 MHz 1 mm 10 - 100 53 A/W @ 800 nm (M = 100) 2.65 x 109 V/W Yes! Yes! -
APD410A DC - 10 MHz 1.0 mm 10 - 100 53 A/W @ 800 nm (M=100) 26.5 x 106 V/W Yes! Yes! -
APD130A DC - 50 MHz 1 mm 50 25 A/W @ 800 nm (M = 50) 2.5 x 106 V/W - Yes! -
APD430A DC - 400 MHz 0.5 mm 10 - 100 53 A/W @ 800 nm (M = 100) 5.3 x 105 V/W Yes! Yes! -
APD431A DC - 400 MHze 0.5 mm 10 - 100 53 A/W @ 800 nm (M = 100) 5.3 x 105 V/W Yes! Yes! Yes!
APD210 5 - 1000 MHzc 0.5 mm 100 50 A/W @ 800 nm (M = 100) 2.5 x 105 V/Wf Yes! Yes! -
APD130C InGaAs APD 900 - 1700 nm DC - 50 MHz 0.2 mm 10 9 A/W @ 1500 nm (M = 10) 0.9 x 106 V/W - Yes! -
APD410C DC - 10 MHz 0.2 mm 4 - 20 18 A/W @ 1550 nm (M = 20) 9.0 x 106 V/W Yes! Yes! -
APD430C DC - 400 MHz 0.2 mm 4 - 20 18 A/W @ 1550 nm (M = 20) 1.8 x 105 V/W Yes! Yes! -
APD431C DC - 400 MHze 0.2 mm 4 - 20 18 A/W @ 1550 nm (M = 20) 1.8 x 105 V/W Yes! Yes! Yes!
APD450C 1260 - 1620 nm 0.3 - 1600 MHz 1.5 mmg 2 - 10 9 A/W @ 1550 nm (M = 10) 45 × 103 V/W Yes! Yes! -
APD310 850 - 1650 nm 5 - 1000 MHzc 0.04 mm 30 0.9 A/W @ 1550 nm (M = 30) 2.5 x 104 V/Wh Yes! Yes! -
  • At Peak Responsivity Wavelength Unless Otherwise Stated
  • Fiber-coupled APDs have an external M12 x 0.5-threaded flange that is directly compatible with our APD fiber connector adapters. This M12 x 0.5-threaded flange can be added to any of Thorlabs' Avalanche Photodetectors. Please contact Tech Support for more information.
  • The max frequency range is 1 MHz - 1600 MHz.
  • At 1 GHz and 650 nm
  • At Maximum Gain Setting
  • At 1 GHz and 800 nm
  • 75 µm Detector with Ø1.5 mm Ball Lens
  • At 1 GHz and 1500 nm

Hide Temperature-Compensated Si Avalanche Photodetectors

Temperature-Compensated Si Avalanche Photodetectors

Key Specificationsa
Item # APD130A2(/M) APD130A(/M)
Detector Type UV-Enhanced
Silicon APD
Silicon APD
Wavelength Range 200 - 1000 nm 400 - 1000 nm
Output Bandwidth (3 dB) DC - 50 MHz
Active Area Diameter 1 mm
Typical Max Responsivity (M = 50) 25 A/W @ 600 nm 25 A/W @ 800 nm
Responsivity Graph
(Click to View)
Transimpedance Gain 50 kV/A (50 Ω Termination)
100 kV/A (High-Z Termination)
Max Conversion Gainb 2.5 × 106 V/W
M Factor 50
M Factor Temperature Stabilitya ±2% (Typical); ±3% (Max)
Saturation Power (CW) 1.5 µW
Minimum NEP (DC - 50 MHz)b 0.21 pW/√Hz 0.20 pW/√Hz
Dimensions (H x W x D) 2.97" x 2.00" x 1.08"
  • For a complete list of specifications and responsivity graphs, please see the Specs tab above. Data are valid at 23 ± 5 °C and 45% ± 15% relative humidity (non-condensing).
  • At the Peak Responsivity Wavelength. For more information on how NEP is calculated, please see Thorlabs' Noise Equivalent Power White Paper.
  • Temperature Compensated to Provide M Factor Stability of ≤±3% Over 18 to 28 °C
  • Internal SM05 and External SM1 Threads Accept Most Fiber Adapters, Lens Tubes, and Other Components
  • Power Supply Included

Thorlabs' APD130A2(/M) and APD130A(/M) Free-Space Avalanche Photodetectors feature an integrated thermistor that maintains an M factor stability of ±3% or better over 23 ± 5 °C by adjusting the bias voltage across the avalanche photodiode, supplying improved output stability in environments with temperature variations.

The orientation of the mechanical and electrical connections, combined with the compact design, ensures that these detectors can fit into tight spaces. Three 8-32 (M4) mounting holes, one on each edge of the housing, further ensure easy integration into complicated mechanical setups. The housing also provides compatibility with both our SM05- and SM1-Series Lens Tubes. An internally SM1-threaded cap is included.

Our SM1-threaded fiber adapters are compatible with these detectors. The internally SM1-threaded adapters can be mated directly to the housing, and are available below. To use our externally SM1-threaded fiber adapters, an internally SM1-threaded lens tube will be required to mate the fiber adapter to the detector's housing. The externally SM05-threaded fiber adapters are not compatible with these detectors.


Part Number
Description
Price
Availability
APD130A2/M
Si Avalanche Photodetector, Temperature Compensated, UV Enhanced, 200 - 1000 nm, M4 Taps
$1,397.00
Today
APD130A/M
Si Avalanche Photodetector, Temperature Compensated, 400 - 1000 nm, M4 Taps
$1,397.00
Today
APD130A2
Si Avalanche Photodetector, Temperature Compensated, UV Enhanced, 200 - 1000 nm, 8-32 Taps
$1,397.00
Today
APD130A
Si Avalanche Photodetector, Temperature Compensated, 400 - 1000 nm, 8-32 Taps
$1,397.00
Today

Hide Variable-Gain, Temperature-Compensated Si Avalanche Photodetectors

Variable-Gain, Temperature-Compensated Si Avalanche Photodetectors

Avalanche Photodetector
Click to Enlarge

The M Factor is controlled by a knob on the side of the APD.
  • Continuously Variable Gain
  • Temperature Compensated to Provide M Factor Stability of ≤±3% Over 18 to 28 °C
  • Internal SM05 and External SM1 Threads Accept Most Fiber Adapters, Lens Tubes, and Other Components
  • Power Supply Included

These Free-Space Avalanche Photodetectors feature a variable gain that can be controlled by a knob on the right side of the housing. Like the APD130A detectors above, these devices feature an integrated thermistor that maintains an M factor stability of ±3% or better over 23 ± 5 °C by adjusting the bias voltage across the avalanche photodiode. Compared to the standard and temperature-controlled APDs above, the APD430A2 and APD430A detectors also offer a larger usable bandwidth of DC to 400 MHz. The APD410A2 and APD410A detectors offer a slightly smaller usable bandwidth (DC to 10 MHz), but with higher sensitivity. The APD440A2 and APD440A detectors offer high transimpedance gain with a lower max bandwidth of 100 kHz.

The orientation of the mechanical and electrical connections, combined with the compact design, ensures that these detectors can fit into tight spaces. Three 8-32 (M4) mounting holes, one on each edge of the housing, further ensure easy integration into complicated mechanical setups. The housing also provides compatibility with both our SM05- and SM1-Series Lens Tubes. An internally SM1-threaded cap is included.

Fiber Coupling Note:
A fiber coupling mechanism can be constructed for our free-space APDs using standard optomechanics. For fiber-coupled applications, we do not recommend using fiber connector adapters such as Thorlabs' S120-FC with the APD410A2(/M), APD430A2(/M), and APD430A detectors due to the small size of the sensors. High coupling losses and degradation of the frequency response may occur. To achieve high coupling efficiency, a fiber collimation package, focusing lens, and X-Y translator should be used. See the Fiber Coupling tab for details.

Please note that Thorlabs also offers the APD431A fiber-coupled Si photodetector, which features an M12 x 0.15-threaded flange that is directly compatible with our M12 x 0.5-threaded fiber connector adapters. This compact and robust mechanism allows for easy fiber coupling with high reproducbility. The M12 x 0.5-threaded flange can be added to any of Thorlabs' Avalanche Photodetectors to provide robust fiber-coupling capabilities. Please contact Tech Support for more information.

Key Specificationsa
Item # APD440A2 APD410A2(/M) APD430A2(/M) APD440A APD410A(/M) APD430A(/M)
Detector Type UV-Enhanced Silicon APD Silicon APD
Wavelength Range 200 - 1000 nm 400 - 1000 nm
Output Bandwidth (3 dB)b DC - 100 kHz DC - 10 MHz DC - 400 MHz DC - 100 kHz DC - 10 MHz DC - 400 MHz
Active Area Diameter 1.0 mm 0.5 mm 0.2 mm 1.0 mm 1.0 mm 0.5 mm
Typical Max Responsivity 25 A/W @ M = 50c 25 A/W @ M = 50c 50 A/W @ M = 100c 53 A/W @ M = 100d
Responsivity Graph
(Click to View)
Transimpedance Gain 25 MV/A (50 Ω)
50 MV/A (High-Z)
250 kV/A (50 Ω)
500 kV/A (High-Z)
5 kV/A (50 Ω)
10 kV/A (High-Z)
25 MV/A (50 Ω)
50 MV/A (High-Z)
250 kV/A (50 Ω)
500 kV/A (High-Z)
5 kV/A (50 Ω)
10 kV/A (High-Z)
Max Conversion Gaine 1.25 × 109 V/W 12.4 × 106 V/W 5.0 × 105 V/W 2.65 × 109 V/W 26.5 × 106 V/W 5.3 × 105 V/W
M Factor Adjustment Range 5 - 50 (Continuous) 10 - 100 (Continuous)
M Factor Temperature Stabilityf ±2% (Typical); ±3% (Max)
Saturation Power (CW) 3.28 nW @ M = 50c
32.8 nW @ M = 5
0.32 µW @ M = 50c
3.20 µW @ M = 5
8.0 µW @ M = 100c
80 µW @ M = 10
1.54 nW @ M = 100d
15.4 nW @ M = 10
0.15 µW @ M = 100d
1.50 µW @ M = 10
8.0 µW @ M = 100d
80 µW @ M = 10
Minimum NEPg 2.5 fW/√Hz 0.09 pW/√Hz 0.15 pW/√Hz 3.5 fW/√Hz 0.04 pW/√Hz 0.14 pW/√Hz
Dimensions (H x Wx D) 2.93" x 2.21" x 1.08" 2.97" x 2.20" x 1.09" 2.93" x 2.21" x 1.08" 2.97" x 2.20" x 1.09"
  • For a complete list of specifications and responsivity graphs, please see the Specs tab above. Data are valid at 23 ± 5 °C and 45% ± 15% relative humidity (non-condensing).
  • At Maximum Gain Setting
  • At 600 nm
  • At 800 nm
  • At the Peak Responsivity Wavelength
  • Within the 23 ± 5 °C temperature range.
  • For more information on how NEP is calculated, please see Thorlabs' Noise Equivalent Power White Paper.

Part Number
Description
Price
Availability
APD410A2/M
Si Variable-Gain Avalanche Detector, Temperature Compensated, UV Enhanced, 200 - 1000 nm, DC - 10 MHz, M4 Taps
$1,457.58
Today
APD430A2/M
Si Variable-Gain Avalanche Detector, Temperature Compensated, UV Enhanced, 200 - 1000 nm, DC - 400 MHz, M4 Taps
$1,457.58
Today
APD410A/M
Si Variable-Gain Avalanche Detector, Temperature Compensated, 400 - 1000 nm, DC - 10 MHz, M4 Taps
$1,457.58
7-10 Days
APD430A/M
Si Variable-Gain Avalanche Detector, Temperature Compensated, 400 - 1000 nm, DC - 400 MHz, M4 Taps
$1,457.58
Today
APD440A
Customer Inspired! Si Variable-Gain Avalanche Detector, Temperature Compensated, 400 - 1000 nm, DC - 100 kHz, Universal 8-32 / M4 Taps
$1,300.32
Today
APD440A2
Customer Inspired! Si Variable-Gain Avalanche Detector, Temperature Compensated, 200 - 1000 nm, DC - 100 kHz, Universal 8-32 / M4 Taps
$1,300.32
Today
APD410A2
Si Variable-Gain Avalanche Detector, Temperature Compensated, UV Enhanced, 200 - 1000 nm, DC - 10 MHz, 8-32 Taps
$1,457.58
Today
APD430A2
Si Variable-Gain Avalanche Detector, Temperature Compensated, UV Enhanced, 200 - 1000 nm, DC - 400 MHz, 8-32 Taps
$1,457.58
Today
APD410A
Si Variable-Gain Avalanche Detector, Temperature Compensated, 400 - 1000 nm, DC - 10 MHz, 8-32 Taps
$1,457.58
Today
APD430A
Si Variable-Gain Avalanche Detector, Temperature Compensated, 400 - 1000 nm, DC - 400 MHz, 8-32 Taps
$1,457.58
Today

Hide Variable-Gain, Temperature-Compensated, High-Speed Si Avalanche Photodetectors

Variable-Gain, Temperature-Compensated, High-Speed Si Avalanche Photodetectors

Key Specificationsa
Item # APD410 APD210
Detector Type Silicon APD
Wavelength Range 200 - 1000 nm 400 - 1000 nm
Frequency Range 1 - 1600 MHz
3 dB Bandwidth 5 - 900 MHz 5 - 1000 MHz
Active Area Diameter 0.2 mm 0.5 mm
Responsivity Graph
(Click to View)
Conversion Gain (Max) 4.5 x 104 V/W @ 1 GHz, 650 nm 2.5 × 105 V/W @ 1 GHz, 800 nm
NEP (Calculated)b 87.6 pW/√Hz 0.24 pW/√Hz
M Factor 50 100
Typ. Max Responsivity 22 A/W @ 650 nm 50 A/W @ 800 nm
  • For a complete list of specifications and responsivity graphs, please see the Specs tab above.
  • For more information on how NEP is calculated, please see Thorlabs' Noise Equivalent Power White Paper.

Applications

  • Fast Laser Pulses
  • Ultra-Low-Light Signals
  • Temperature-Compensated Avalanche Photodiode
  • Integrated Radio Frequency Amplifier
  • Continuously Adjustable Gain Setting
  • Long-Term Field Tested
  • Free-Space Optical Input with Internal SM05 (0.535"-40) Threading
  • Easy-to-Use Package
  • Location-Specific (EU or US) Power Supply Included

Originally developed for the detection of the beat note signal between CW or pulsed lasers, Menlo Systems' Si Avalanche Photodetectors are ideally suited for applications requiring very high sensitivity for low-light input signals in the 200 - 1000 nm or 400 - 1000 nm range. The APD avalanche photodiode series can provide an extremely sensitive alternative to traditional PIN photodiodes. They are also fast enough for the characterization of, for example, pulsed solid-state lasers on the nanosecond time scale.

The detectors maintain high gain stability over the 10 °C to 40 °C temperature range by utilizing a temperature compensation circuit, which adjusts the ~150 V DC bias to ensure operation near the breakdown voltage.

Models for both the visible and near infrared range are available. The compact design of these detectors allows for easy OEM integration.

The units are especially recommended for applications such as metrology when homodyne or heterodyne optical beat signals of weak power have to be detected and amplified in a highly efficient way.


Part Number
Description
Price
Availability
APD410
Si Variable-Gain Avalanche Detector, Temperature Compensated, 200 - 1000 nm, 1 - 1600 MHz, M4 Tap
$2,497.25
Today
APD210
Si Variable-Gain Avalanche Detector, Temperature Compensated, 400 - 1000 nm, 1 - 1600 MHz, M4 Tap
$2,497.25
Today

Hide ±12 VDC Regulated Linear Power Supply

±12 VDC Regulated Linear Power Supply

  • Replacement Power Supply for Avalanche Photodetectors Sold Above (Except Item # APD210)
  • ±12 VDC Power Output
  • Current Limit Enabling Short Circuit and Overload Protection
  • On/Off Switch with LED Indicator
  • Switchable AC Input Voltage (100, 120, or 230 VAC)
  • 2 m (6.6 ft) Cable with LUMBERG RSMV3 Male Connector
  • UL and CE Compliant

The LDS12B ±12 VDC Regulated Linear Power Supply is intended as a replacement for the supply included with our APD series of avalanche photodetectors sold on this page, except for the APD210 photodetector. The cord has three pins: one for ground, one for +12 V, and one for -12 V (see diagram above). This power supply ships with a location-specific power cord. This power supply can also be used with the PDA series of amplified photodetectors, PDB series of balanced photodetectors, PMM series of photomultiplier modules, and the FSAC autocorrelator for femtosecond lasers.


Part Number
Description
Price
Availability
LDS12B
±12 VDC Regulated Linear Power Supply, 6 W, 100/120/230 VAC
$93.55
Today

Hide Internally SM1-Threaded Fiber Adapters

Internally SM1-Threaded Fiber Adapters

  • Internally SM1-Threaded (1.035"-40) Disks with FC/PC, FC/APC, SMA, ST®*/PC, SC/PC, LC/PC, or Ø2.5 mm Ferrule Receptacle
  • Light-Tight Construction when used with SM1 Lens Tubes

These Fiber Adapters can be used with many of our avalanche photodetectors above. Note that we do not recommend using fiber connector adapters alone to couple light onto the APD401A2(/M), APD430A2(/M), and APD430A(/M) avalanche photodetectors due to the small size of their sensors. To achieve high coupling efficiency, a fiber collimation package, focusing lens, and X-Y translator should be used. See the Fiber Coupling tab for details.

The FC/PC and FC/APC adapters are available in narrow or wide key versions; for details on narrow versus wide key connectors, please see our Intro to Fiber tutorial.

The FC/APC adapters have two dimples in the front surface that allow them to be tightened with the SPW909 or SPW801 spanner wrench. The dimples do not go all the way through the disk so that the adapter can be used in light-tight applications when paired with SM1 lens tubes.

The S120-25 ferrule adapter is designed without a locking connector mechanism and accepts fiber patch cables with Ø2.5 mm ferrules for quick measurements with photodetectors or power sensors.

Item # S120-FC2 S120-FC S120-APC2a S120-APCa S120-SMA S120-ST S120-SC S120-LC S120-25
Adapter Image
(Click the Image
to Enlarge)
S120-FC2 S120-FC S120-APC2 S120-APC S120-SMA S120-ST S120-SC S120-LC S120-25
Fiber Connector Type FC/PC,
2.0 mm Narrow Key
FC/PC,
2.2 mm Wide Key
FC/APC,
2.0 mm Narrow Key
FC/APC
2.2 mm Wide Key
SMA ST/PC SC/PCb LC/PC Ø2.5 mm Ferrule
Threading Internal SM1 (1.035"-40)
  • The S120-APC2 and S120-APC are designed with a 4° mechanical angle to compensate for the refraction angle of the output beam.
  • In certain angle-independent applications, this adapter may also be used with SC/APC connectors.

*ST® is a registered trademark of Lucent Technologies, Inc.


Part Number
Description
Price
Availability
S120-FC2
FC/PC Fiber Adapter Cap with Internal SM1 (1.035"-40) Threads, Narrow Key (2.0 mm)
$46.33
Today
S120-FC
FC/PC Fiber Adapter Cap with Internal SM1 (1.035"-40) Threads, Wide Key (2.2 mm)
$46.33
Today
S120-APC2
FC/APC Fiber Adapter Cap with Internal SM1 (1.035"-40) Threads, Narrow Key (2.0 mm)
$36.18
Today
S120-APC
Customer Inspired! FC/APC Fiber Adapter Cap with Internal SM1 (1.035"-40) Threads, Wide Key (2.2 mm)
$36.18
Today
S120-SMA
SMA Fiber Adapter Cap with Internal SM1 (1.035"-40) Threads
$46.33
Today
S120-ST
ST/PC Fiber Adapter Cap with Internal SM1 (1.035"-40) Threads
$46.33
Today
S120-SC
SC/PC Fiber Adapter Cap with Internal SM1 (1.035"-40) Threads
$58.21
Today
S120-LC
LC/PC Fiber Adapter Cap with Internal SM1 (1.035"-40) Threads
$58.21
Today
S120-25
Customer Inspired! Ø2.5 mm Ferrule Adapter Cap with Internal SM1 (1.035"-40) Threads
$46.33
Today